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Three-dimensional optical trajectory tracing and energy deposition
of a laser beam in a laser-driven fusion
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A convenient method of three-dimensional ray tracing is suggested in the geometrical optical approximation,
in which the laser ray propagation is completely based on the concept of optical trajectory tracing rather than
depending upon the effective force and propagation time. This tracing has two obvious advantages that the
direct application of Snell's law can be avoided when a ray crosses a different density zone and that to any
desired accuracy it takes much less computation time than existing tracing. For Gaussian light beam propaga-
tion, in a spherically symmetric plasma atmosphere, the results emphasize that the deposition uniformity is
strongly dependent not only on the wavelength of the laser but also on the temperature of the plasma.
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[. INTRODUCTION ered to be under the influence of an effective foree
—3(Vén)c?, where Sn=n,/n, and to move at the group

In laser-driven initial confinement fusidrd], the deposi-  velocity vy=dw/dk=cV ¢; it carries the corresponding laser
tion of laser energy and the uniformity of energy absorptionenergy. Based on this concept recent widrkgave a method
by plasma are critical stages in achieving a high gain anaf tracing using an unstructured three-dimensid8&l) grid.
symmetric implosion of a spherical pellg?,3]. Unfortu- It is an extremely complicated determination of where rays
nately, to calculate the energy deposition by solving the fullcross computational zone interfaces. This originates from the
wave equation of the laser light is extremely difficult for a discontinuous density at zone interfaces which cause singu-
multidimensional density profile of the plasma. The energyarities in the effective force governing ray propagation. The
deposition is computed in practice by tracing laser raysapplication of Snell's law at the zone interfaces is the only
through the plasma by the geometrical optical approximationway to treat these singularities. However, for a multidimen-
and energy absorption along the ray trajectory by inverseional discontinuous plasma-density profigven by hydro-
bremsstrahlungIB) and resonance excitation or other ab-dynamic codeksit is very inconvenient.
sorption mechanisms. The validity of tracing by the geo- In this paper we propose a more direct 3D ray equation
metrical optics approximation is based on the facts that thend a more convenient ray-tracing method in the approxima-
light wavelength is much shorter than the plasma scal¢ion of geometrical optics. By using optical trajectory tracing
length and the electron density varies slowly over the lasethe conceptions of ray velocity, effective force, and tracing
wavelength. time are avoided. In particular, the clear advantage of this

In geometrical optical theory, the local electromagnetictracing method is that the direct application of Snell’s law
wave phase/(r) in nonhomogeneous media is assumed tocan be left out and it requires much less computational effort
be a complex function. The eikonal equation )%= 7?2, (in comparison with existing methogdfor obtaining any de-
where = 7(X,y,z) is the local refractive index in the me- sired accuracy. For an incident Gaussian light wave we cal-
dium. The ray equation in the geometrical optics approximaculate the laser energy deposition and examine the unifor-

tion is represented d4—6] mity of absorption. The results stress that the absorption
efficiency and the deposition uniformity are strongly depen-
dr 1 dent on the plasma temperature as well as the light wave-

2 = EV( 7°c?), (1)  length.

. . . . Il. RAY EQUATION AND TRACIN
wherer is the position vector, the propagation time, ancl QUATIO CING

the speed of light. In a nonrelativistic unmagnetized plasma According to Fermat’s principlg7,8], another form of the

for an incident light wave with frequencyw, #7=(1 ray equation in a graded-index medium, in the geometrical

— w5l w?)*?=(1-n/n)*? and is assumed to vary on a optical approximation, is

much longer spatial scale than the light wavelength. Where

wp, Ne, andn, are the characteristic frequency, the density, g

and the critical density of plasma electrons, respectively. In ds

such a framework the wave fronts with wave vedtamove

at the phase velocitw|k| "*=c|V| 1. The ray is consid- whereds is an element of the arclength along the ray. For
the convenience of direct numerical integration of the above
equation, a new variablg¢ is defined asié=ds/ ». Equation

*Mailing address. (2) thus becomes

dr
7(r) gl =V 2(n), @
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d’r 1V ) 2
4w 2 (7). 3
Further, defining an optical ray vector Rs=dr/d¢, the ray
equation is simplified to a first-order differential equation,

dR 1
—=sV(5?). (4)

dé 2
It is obvious that the components of this vector are the three
optical direction cosines, namely,

dr
R= nd—szexn cosa+ e, 7 CosB+e,7 Ccosy,

wherea, B, andvy are the angles that the ray direction makes
with the x, y, andz axes, respectively. One can see from the
ray equation(4) that the optical ray vectoR is obtained
simultaneously with the propagation process, which simpli-
fies the computation of refraction at various optical surfaces.
The convenience is obvious for ray tracing especially in a .
multidimensional random plasma-density profile. In this situ- FIG. 1. Geometry of one 3D computational mesh.
ation Snell's law can be written in terms of the optical ray ) )
vector simply asR,=R,+ o€ , whereR, and R, are the traverses the grlo_l, and the mesh face is pIanar._However, the
N density and gradient are usually not followed with an evolu-
tion equation because the hydrodynamic codes discretize the
fundamentional equations on meshes of points that define
point of refraction. The parameter= (75— 75+ «)">~«,  computational nodes and zones, i.e., some computed quanti-
where 7, and 77, are the refractive indices of the two media ties are specified in the zones and others are specified at
involved in refraction at the point of refraction, ardis the  nodes. The mesh number is usually represented by a speci-
scalar product oRy, ande . The other convenience is that fied node numbei=1,2,3... . In theith computational
the propagation time of the ray is not involved in Ed) zone the electron densityy(x,y,z) is determined by the
unlike the ray equatioitl). Direct optical trajectory tracing specified values at each contiguous node. According to pla-
(not time tracing and simplification of the computation of nar geometrics, therefore, the zone density can be roughly
refraction can reduce the computational time for the tracingepresented as
process. If we write the vectd® as the component forms

optical ray vectors before and after refraction, respectively
and e, is the unit vector normal to the optical surface at the

. an, n, ang

_dx = _dy R _dz 59 Ne=nNe+ &_X(X_Xi)'I'W(y_yi)_"E(z_zi) (6)
d¢’ Yo dé’ Zde

and the relevant gradients are

Ry

then the ray equatiofd) becomes .

an! 1 AyAP)
R, 1972 dR, 1d7% dR, 172 —=—c Izl 7
dRc_L1on ARy _1on AR, 1ow X~ 3 e AP) (79
dé 2 ox dé 2 oy d¢é 2 o9z
i 3
which can be directly integrated numerically by the standard %: _ 1 2 M (7h)
Runge-Kutta methof9]. Information about the laser-plasma 4% 3751 AP
interaction, e.g., the properties of collision and response of _
the plasma, etc., can be included in the functigir) due to on. 1 32 A (P)
the relatione= 7?, wheree is the dielectric function —=z Y = (70)
€= € \ gz 3pfTe1 APy’

These characteristics of ray equati@ make ray tracing
extfeme'y easy. Wh'(.:h zone the ray will enter can be deter\'/vhereP-(j =1,2,3) represent three faces connected toi the
mined by simple logical judgment alone, and then the ray d i is thei-node densi o d
will arrive at the next poinutomaticallyin terms of Snell's N°d€:Ne(Xi,¥i,z) is thei-node density, and;, y;, andz
law when a ray passes from one computational zone to ar2'® the coordinates of this node. As an example of node
other geometry we give a computational zorie=(1) in Fig. 1. The

In order to carry out ray tracing, we assume that the scaléone density ng(x,y,z) is represented by the density
length of the electron-density gradient is of the same order asé(xl,yl,zl) at nodea;. The three faces connected to

the grid size, the gradient is constant while a typical raynode a; are Pi(a;,a,,az,a4), P»(a;,a,,a4,a5), and
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Ps(a;,a4,ag5,as5). For theP, face where the node densities The IB absorption coefficier is dependent on the electron
are written asnl, n®2, n®, and n* at nodesa,; density and temperature at the computational point, and is
p € ° expressed agL0]

= al(Xl vyl 121) ’ a2: aZ(Xa2=yaZ! Zaz) ’ 3.3: a3(xa31ya31 Za3) ’

anda4=a4(xa4,ya4,za4), respectively, the corresponding co- n2

efficient determinants can be represented as K21021K07(1— on)~ 2 12
Xg, — X - Z,—Z

a, X1 Ya,7 Y1 Za,m 21 where
AP)=|Xa,7 X1 Ya,7¥Y1 Za,— 721, 8
( 1) 3 3 3 ( a) 4 2 1/2642 s
Xa4_ X1 ya4_y1 Za4_ Z; K0: § M, T Te InA, (13)
Xa,” X1 Ya,” Y1 ﬁ:z— ﬁé andZ is the ion charge numbeg,the electron chargem, the
ag A1 electron mass, IA the Coulomb logarithm, and the tempera-
Ay(Py)=|Xas7 X1 Yag7¥1 NS—ngl, (8D  tureT,is in eV. The term in Eq(12), (1—6n)~ Y2 in fact,

Xa,~X1 Ya,~Y1 e ﬁé is important only forw=w, (resonance excitationand

e hence one can neglect it in calculation of IB absorption be-

cause this term only increasks Once the absorption rate is

Ya,” Y1 Za,” 71 nzz—ntle obtained it can be integrated along the ray trajectory to de-
_ _ nag n1 termine the fraction of energy deposited in the computational

Ay (P)=|Ya;7¥1 Za;721 nS-nNg|, (80  zone.
~ ~1 As an application of the above theory, we compute the

- Zy,— 71 n4— O . . S
Ya, "Y1 Za,m& ng'one energy deposition in a spherical target associated with direct

drive laser fusion. In practice, the calculation is greatly sim-

Za,7 21 X5,7 X1 n:z_ N plified by using beams with identical, azimuthally symmetric

_ _ fag a1 intensity profiles. Then only one beam must be calculated
Ap(P1)=|%a," %1 XagmX1 NS —Ng|.  (8d)  and results for the other beams are obtained by rotation. We
~ ~q assume that the incident laser beam is focused on the center

Za,~ 721 Xa4_X1 na“—ne . .
e of the spherical fusion pellet, the wavelengtk1.06 xm,

Ehe radius of the spherical plasma k=10 mm, and the
éiéical density point along the axis isz;.=3 mm. In the
computations one beam is split into 200 rays along ythe
direction and only 100 rays are taken into account due to
azimuthal symmetry. Defining the deposited fraction as
lll. CALCULATION OF ENERGY DEPOSITION Alllg, the fraction of IB absorption for the first 20 rays from

To compute the energy deposition it is necessary to conthe beam axis vs the propagation deptis plotted in Fig. 2
sider the spatial distribution of laser intensity. Assuming andt 100 eV and 2 keV electron temperatures. The result shows
incident Gaussian beam propagating along zhexis, as a that the energy deposits rapidly in the corona and is com-
zero-order mode, the beam intensity is written as pletely depleted in a short pafffig. 2a)]. When the tem-

perature increases continuously the deposition length in-
lo x2+y? creases, and if it approaches or exceeds the keV level the
I, (X,y,2)= ——expg —2
w(z) d?w(z)

The temperature and relevant gradient of the electron, in th
same way as above, can also be obtained. These results ag
with those of Ref][6].

' ©) deposition efficiency becomes so low that part of the energy
is reflected back into the vacuuffig. 2(b)]. It is obvious

that the deposition is strongly dependent on the temperature,
implying that a low electron temperature is of great advan-

wavelength. tage for the rate, efficiency, and uniformity of the energy

. . . . o deposition.
Assuming that the maximum intensity of incident rays at Resonance absorption is possible only for the
the point of passing from vacuum to the plasma atmospherg

wherel is the focused intensityd; the radius of the focal
spot, andw(z)=1+(z)\/77df)2 is dependent on the laser

is |- the intensity absorbed by elect th finish -polarization component of the laser field when the beam
IS Tim, the INtensity absorbed Dy electrons as he ray hinisne ropagates from the turning to the critical points. However,

one step along t.he patisi€-si—,=As;), due to the IB pro- for electron temperatures below the keV level, from the
cess, can be written as above result, resonance absorption does not exist because the
energy is completely depleted before the rays arrive at the
turning point. If the electron temperature approaches or ex-
ceeds the keV level the resonance absorption could occur as
the incident rays depart from the beam axis. For conve-
nience, the electron density from the turning paintwhere
the density i) to the critical surface. is assumed to have

X|=exp<—f Kids).

As;

A':B:'i—l—'i=|im(1—xi)X1X2---XH, (10)

wherel; is the residual intensity of the ray at thih step and
x is the IB absorption rate, namely,

(11 a linear profile[11]. Then the resonance absorption rate is
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FIG. 3. Deposited fraction including IB and resonance absorp-
tion vs propagating depth of ray with wavelength 1,06 for 2
0.0051 keV electron temperature.
C . . . .
S 0.0041 that the absorption fraction in the corona increases, the re-
3 flected energy of rays decreases, and the resonance absorp-
< 0.003- tion disappears for 2 keV temperature and 0568 wave-
:8 length [Fig. 4(@]. On shortening the wavelength further to
'g 0.0021 0.35um, the energy of the rays is dgpleted pefo_re they arrive
S at the turning point and the absorption fraction in the corona
()]
0.001 0.018-
0.000 . c 0016
2 3 4 5 6 7 8 9 10 L2 00141
Q
v4 R S 00121
FIG. 2. Deposited fraction of IB absorption vs propagating B 0.010
depth of ray with wavelength 1.06m for (a) 100 eV andb) 2 keV 'g 0.0084
electron temperatures. a
3 0.0061
d3(7) 2mL\ 3 ) 14 g 0.0041
= , =|——] sinfy,
Xrm2 Y 0 = 0.002
and the density scale length is 0'0002
I'[— rc
= . (15
1-én, 0.040
In these equations the incident anglg is governed by ray 0.0357
tracing, sn,=n,/n;, and the resonance function is described _5 0,030
as ‘g '
E  0.0251
273 §e]
¢d(7)=2.3rexp — —|. (16 2 0.0204
3 @
8 0.015-
Figure 3 plots the fraction of resonance absorption at differ- 3 ]
ent azimuthal angles. The maximum fraction absorbed due to o 0.010
resonance exceeds that of IB absorption by 40% for azi- E 0.005-
muthal angle¢=m/2 and zero for¢=0, which shows an
) " . : o 0.000
obvious deposition nonuniformity. This implies that the reso- 3

nance absorption is the main dynamical reason leading to
nonuniformity of the energy deposition.

The wavelength dependence of energy deposition is FIG. 4. Same as Fig.(B) but light wavelengths are) 0.53um
shown in Fig. 4. By comparison with Fig(l® one can see and(b) 0.35um.
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increases furthdiFig. 4(b)]. This implies that the absorption creasing the fraction of IB absorption and avoiding reso-
efficiency and uniformity can be improved and the resonanc@ance excitation during beam propagation so as to reach a
absorption that leads to deposition nonuniformity can behigh efficiency and uniformity of deposition finally, in addi-
avoided by using shorter wavelength ligletg.,A =0.53 or  tion to using a short wavelength of the laser, low temperature
0.35um). This is particularly important for laser-driven fu- of the plasma is also a significant dynamical factor.

sion.
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