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Three-dimensional optical trajectory tracing and energy deposition
of a laser beam in a laser-driven fusion
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A convenient method of three-dimensional ray tracing is suggested in the geometrical optical approximation,
in which the laser ray propagation is completely based on the concept of optical trajectory tracing rather than
depending upon the effective force and propagation time. This tracing has two obvious advantages that the
direct application of Snell’s law can be avoided when a ray crosses a different density zone and that to any
desired accuracy it takes much less computation time than existing tracing. For Gaussian light beam propaga-
tion, in a spherically symmetric plasma atmosphere, the results emphasize that the deposition uniformity is
strongly dependent not only on the wavelength of the laser but also on the temperature of the plasma.
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I. INTRODUCTION

In laser-driven initial confinement fusion@1#, the deposi-
tion of laser energy and the uniformity of energy absorpt
by plasma are critical stages in achieving a high gain
symmetric implosion of a spherical pellet@2,3#. Unfortu-
nately, to calculate the energy deposition by solving the
wave equation of the laser light is extremely difficult for
multidimensional density profile of the plasma. The ene
deposition is computed in practice by tracing laser ra
through the plasma by the geometrical optical approxima
and energy absorption along the ray trajectory by inve
bremsstrahlung~IB! and resonance excitation or other a
sorption mechanisms. The validity of tracing by the ge
metrical optics approximation is based on the facts that
light wavelength is much shorter than the plasma sc
length and the electron density varies slowly over the la
wavelength.

In geometrical optical theory, the local electromagne
wave phasec(r ) in nonhomogeneous media is assumed
be a complex function. The eikonal equation is (¹c)25h2,
whereh5h(x,y,z) is the local refractive index in the me
dium. The ray equation in the geometrical optics approxim
tion is represented as@4–6#

d2r

dt2
5

1

2
“~h2c2!, ~1!

wherer is the position vector,t the propagation time, andc
the speed of light. In a nonrelativistic unmagnetized plas
for an incident light wave with frequencyv, h5(1
2vp

2/v2)1/25(12ne /nc)
1/2 and is assumed to vary on

much longer spatial scale than the light wavelength. Wh
vp , ne , andnc are the characteristic frequency, the dens
and the critical density of plasma electrons, respectively
such a framework the wave fronts with wave vectork move
at the phase velocityvuku215cu“cu21. The ray is consid-
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ered to be under the influence of an effective force;
2 1

2 (¹dn)c2, wheredn5ne /nc and to move at the group
velocity vg5]v/]k5c“c; it carries the corresponding lase
energy. Based on this concept recent work@6# gave a method
of tracing using an unstructured three-dimensional~3D! grid.
It is an extremely complicated determination of where ra
cross computational zone interfaces. This originates from
discontinuous density at zone interfaces which cause sin
larities in the effective force governing ray propagation. T
application of Snell’s law at the zone interfaces is the o
way to treat these singularities. However, for a multidime
sional discontinuous plasma-density profile~given by hydro-
dynamic codes! it is very inconvenient.

In this paper we propose a more direct 3D ray equat
and a more convenient ray-tracing method in the approxim
tion of geometrical optics. By using optical trajectory tracin
the conceptions of ray velocity, effective force, and traci
time are avoided. In particular, the clear advantage of
tracing method is that the direct application of Snell’s la
can be left out and it requires much less computational ef
~in comparison with existing methods! for obtaining any de-
sired accuracy. For an incident Gaussian light wave we
culate the laser energy deposition and examine the un
mity of absorption. The results stress that the absorp
efficiency and the deposition uniformity are strongly depe
dent on the plasma temperature as well as the light wa
length.

II. RAY EQUATION AND TRACING

According to Fermat’s principle@7,8#, another form of the
ray equation in a graded-index medium, in the geometr
optical approximation, is

d

dsFh~r !
dr

dsG5“h~r !, ~2!

whereds is an element of the arclength along the ray. F
the convenience of direct numerical integration of the abo
equation, a new variablej is defined asdj5ds/h. Equation
~2! thus becomes
©2001 The American Physical Society03-1
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d2r

dj2
5

1

2
“~h2!. ~3!

Further, defining an optical ray vector asR[dr /dj, the ray
equation is simplified to a first-order differential equation

dR

dj
5

1

2
“~h2!. ~4!

It is obvious that the components of this vector are the th
optical direction cosines, namely,

R5h
dr

ds
5exh cosa1eyh cosb1ezh cosg,

wherea, b, andg are the angles that the ray direction mak
with the x, y, andz axes, respectively. One can see from t
ray equation~4! that the optical ray vectorR is obtained
simultaneously with the propagation process, which sim
fies the computation of refraction at various optical surfac
The convenience is obvious for ray tracing especially in
multidimensional random plasma-density profile. In this si
ation Snell’s law can be written in terms of the optical r
vector simply asRa5Rb1se

N
, where Rb and Ra are the

optical ray vectors before and after refraction, respectiv
ande

N
is the unit vector normal to the optical surface at t

point of refraction. The parameters5(ha
22hb

21k)1/22k,
wherehb andha are the refractive indices of the two med
involved in refraction at the point of refraction, andk is the
scalar product ofRb and e

N
. The other convenience is tha

the propagation time of the ray is not involved in Eq.~4!
unlike the ray equation~1!. Direct optical trajectory tracing
~not time tracing! and simplification of the computation o
refraction can reduce the computational time for the trac
process. If we write the vectorR as the component forms

Rx5
dx

dj
, Ry5

dy

dj
, Rz5

dz

dj
, ~5a!

then the ray equation~4! becomes

dRx

dj
5

1

2

]h2

]x
,

dRy

dj
5

1

2

]h2

]y
,

dRz

dj
5

1

2

]h2

]z
, ~5b!

which can be directly integrated numerically by the stand
Runge-Kutta method@9#. Information about the laser-plasm
interaction, e.g., the properties of collision and response
the plasma, etc., can be included in the functionh2(r ) due to
the relatione5h2, wheree is the dielectric function.

These characteristics of ray equation~4! make ray tracing
extremely easy. Which zone the ray will enter can be de
mined by simple logical judgment alone, and then the
will arrive at the next pointautomaticallyin terms of Snell’s
law when a ray passes from one computational zone to
other.

In order to carry out ray tracing, we assume that the sc
length of the electron-density gradient is of the same orde
the grid size, the gradient is constant while a typical r
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traverses the grid, and the mesh face is planar. However
density and gradient are usually not followed with an evo
tion equation because the hydrodynamic codes discretize
fundamentional equations on meshes of points that de
computational nodes and zones, i.e., some computed qu
ties are specified in the zones and others are specifie
nodes. The mesh number is usually represented by a sp
fied node numberi 51,2,3, . . . . In the i th computational
zone the electron densityne

i (x,y,z) is determined by the
specified values at each contiguous node. According to
nar geometrics, therefore, the zone density can be rou
represented as

ne
i 5n̂e

i 1
]ne

i

]x
~x2xi !1

]ne
i

]y
~y2yi !1

]ne
i

]z
~z2zi ! ~6!

and the relevant gradients are

]ne
i

]x
52

1

3 (
Pj , j 51

3
Dyz~Pj !

D~Pj !
, ~7a!

]ne
i

]y
52

1

3 (
Pj , j 51

3
Dzx~Pj !

D~Pj !
, ~7b!

]ne
i

]z
5

1

3 (
Pj , j 51

3
Dxy~Pj !

D~Pj !
, ~7c!

wherePj ( j 51,2,3) represent three faces connected to thi

node,n̂e
i (xi ,yi ,zi) is the i-node density, andxi , yi , andzi

are the coordinates of this node. As an example of n
geometry we give a computational zone (i 51) in Fig. 1. The
zone density ne

1(x,y,z) is represented by the densit

n̂e
1(x1 ,y1 ,z1) at node a1. The three faces connected

node a1 are P1(a1 ,a2 ,a3 ,a4), P2(a1 ,a2 ,a6 ,a5), and

FIG. 1. Geometry of one 3D computational mesh.
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P3(a1 ,a4 ,a8 ,a5). For theP1 face where the node densitie
are written as n̂e

1 , n̂e
a2 , n̂e

a3 , and n̂e
a4 at nodes a1

5a1(x1 ,y1 ,z1), a25a2(xa2
,ya2

,za2
), a35a3(xa3

,ya3
,za3

),

anda45a4(xa4
,ya4

,za4
), respectively, the corresponding c

efficient determinants can be represented as

D~P1!5Uxa2
2x1 ya2

2y1 za2
2z1

xa3
2x1 ya3

2y1 za3
2z1

xa4
2x1 ya4

2y1 za4
2z1

U , ~8a!

Dxy~P1!5U xa2
2x1 ya2

2y1 n̂e
a22n̂e

1

xa3
2x1 ya3

2y1 n̂e
a32n̂e

1

xa4
2x1 ya4

2y1 n̂e
a42n̂e

1

U , ~8b!

Dyz~P1!5U ya2
2y1 za2

2z1 n̂e
a22n̂e

1

ya3
2y1 za3

2z1 n̂e
a32n̂e

1

ya4
2y1 za4

2z1 n̂e
a42n̂e

1

U , ~8c!

Dzx~P1!5U za2
2z1 xa2

2x1 n̂e
a22n̂e

1

za3
2z1 xa3

2x1 n̂e
a32n̂e

1

za4
2z1 xa4

2x1 n̂e
a42n̂e

1

U . ~8d!

The temperature and relevant gradient of the electron, in
same way as above, can also be obtained. These results
with those of Ref.@6#.

III. CALCULATION OF ENERGY DEPOSITION

To compute the energy deposition it is necessary to c
sider the spatial distribution of laser intensity. Assuming
incident Gaussian beam propagating along thez axis, as a
zero-order mode, the beam intensity is written as

I r~x,y,z!5
I 0

w~z!
expF22

x21y2

df
2w~z!

G , ~9!

where I 0 is the focused intensity,df the radius of the foca
spot, andw(z)511(zl/pdf

2)2 is dependent on the lase
wavelengthl.

Assuming that the maximum intensity of incident rays
the point of passing from vacuum to the plasma atmosph
is I im , the intensity absorbed by electrons as the ray finis
one step along the path (si2si 215Dsi), due to the IB pro-
cess, can be written as

DI
IB

i 5I i 212I i5I im~12x i !x1x2•••x i 21 , ~10!

whereI i is the residual intensity of the ray at thei th step and
x is the IB absorption rate, namely,

x i5expS 2E Kidsi D . ~11!

Dsi
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The IB absorption coefficientK is dependent on the electro
density and temperature at the computational point, an
expressed as@10#

K.1021K0

dn2

l2
~12dn!21/2, ~12!

where

K05F S 4

3D S 2

pme
D 1/2e4Z

c GTe
23/2ln L, ~13!

andZ is the ion charge number,e the electron charge,me the
electron mass, lnL the Coulomb logarithm, and the temper
ture Te is in eV. The term in Eq.~12!, (12dn)21/2, in fact,
is important only for v.vp ~resonance excitation! and
hence one can neglect it in calculation of IB absorption
cause this term only increasesK. Once the absorption rate i
obtained it can be integrated along the ray trajectory to
termine the fraction of energy deposited in the computatio
zone.

As an application of the above theory, we compute
energy deposition in a spherical target associated with di
drive laser fusion. In practice, the calculation is greatly si
plified by using beams with identical, azimuthally symmet
intensity profiles. Then only one beam must be calcula
and results for the other beams are obtained by rotation.
assume that the incident laser beam is focused on the ce
of the spherical fusion pellet, the wavelengthl51.06 mm,
the radius of the spherical plasma isR510 mm, and the
critical density point along thez axis is zc53 mm. In the
computations one beam is split into 200 rays along thy
direction and only 100 rays are taken into account due
azimuthal symmetry. Defining the deposited fraction
DI /I 0, the fraction of IB absorption for the first 20 rays from
the beam axis vs the propagation depthz is plotted in Fig. 2
at 100 eV and 2 keV electron temperatures. The result sh
that the energy deposits rapidly in the corona and is co
pletely depleted in a short path@Fig. 2~a!#. When the tem-
perature increases continuously the deposition length
creases, and if it approaches or exceeds the keV level
deposition efficiency becomes so low that part of the ene
is reflected back into the vacuum@Fig. 2~b!#. It is obvious
that the deposition is strongly dependent on the temperat
implying that a low electron temperature is of great adva
tage for the rate, efficiency, and uniformity of the ener
deposition.

Resonance absorption is possible only for t
p-polarization component of the laser field when the be
propagates from the turning to the critical points. Howev
for electron temperatures below the keV level, from t
above result, resonance absorption does not exist becaus
energy is completely depleted before the rays arrive at
turning point. If the electron temperature approaches or
ceeds the keV level the resonance absorption could occu
the incident rays depart from the beam axis. For con
nience, the electron density from the turning pointr t ~where
the density isnt) to the critical surfacer c is assumed to have
a linear profile@11#. Then the resonance absorption rate i
3-3
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x r5
f2~t!

2
, t5S 2pL

l D 1/3

sinu0 , ~14!

and the density scale length is

L5
r t2r c

12dnt
. ~15!

In these equations the incident angleu0 is governed by ray
tracing,dnt5nt /nc , and the resonance function is describ
as

f~t!.2.3t expS 2
2t3

3 D . ~16!

Figure 3 plots the fraction of resonance absorption at dif
ent azimuthal angles. The maximum fraction absorbed du
resonance exceeds that of IB absorption by 40% for
muthal anglef5p/2 and zero forf50, which shows an
obvious deposition nonuniformity. This implies that the res
nance absorption is the main dynamical reason leadin
nonuniformity of the energy deposition.

The wavelength dependence of energy deposition
shown in Fig. 4. By comparison with Fig. 2~b! one can see

FIG. 2. Deposited fraction of IB absorption vs propagati
depth of ray with wavelength 1.06mm for ~a! 100 eV and~b! 2 keV
electron temperatures.
03670
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that the absorption fraction in the corona increases, the
flected energy of rays decreases, and the resonance ab
tion disappears for 2 keV temperature and 0.53mm wave-
length @Fig. 4~a!#. On shortening the wavelength further
0.35mm, the energy of the rays is depleted before they arr
at the turning point and the absorption fraction in the coro

FIG. 3. Deposited fraction including IB and resonance abso
tion vs propagating depth of ray with wavelength 1.06mm for 2
keV electron temperature.

FIG. 4. Same as Fig. 2~b! but light wavelengths are~a! 0.53mm
and ~b! 0.35mm.
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increases further@Fig. 4~b!#. This implies that the absorptio
efficiency and uniformity can be improved and the resona
absorption that leads to deposition nonuniformity can
avoided by using shorter wavelength light~e.g.,l50.53 or
0.35mm). This is particularly important for laser-driven fu
sion.

IV. CONCLUSION

In conclusion, we suggest a more convenient and effic
3D ray-tracing method that can greatly simplify the traci
procedures and shorten the computational time. By apply
this tracing method to compute the energy deposition o
laser in a spherically symmetric plasma, we show that,
.

-

03670
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creasing the fraction of IB absorption and avoiding res
nance excitation during beam propagation so as to rea
high efficiency and uniformity of deposition finally, in add
tion to using a short wavelength of the laser, low temperat
of the plasma is also a significant dynamical factor.
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